Nuprl Lemma : real-vec-sep-cases
∀n:ℕ. ∀a,b:ℝ^n.  (a ≠ b 
⇒ (∀c:ℝ^n. (a ≠ c ∨ b ≠ c)))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
real-vec-sep: a ≠ b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
, 
false: False
, 
not: ¬A
, 
rge: x ≥ y
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
Lemmas referenced : 
real-vec_wf, 
rless_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
nat_wf, 
rless-cases, 
rdiv_wf, 
rless-int, 
rmul_preserves_rless, 
rmul_wf, 
rinv_wf2, 
rless_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
req-iff-rsub-is-0, 
req_transitivity, 
itermVar_wf, 
real_term_value_var_lemma, 
rmul-rinv3, 
real-vec-triangle-inequality, 
radd_wf, 
rleq_functionality, 
req_weakening, 
radd_functionality, 
real-vec-dist-symmetry, 
radd-preserves-rless, 
itermAdd_wf, 
real_term_value_add_lemma, 
rinv-mul-as-rdiv, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
radd_functionality_wrt_rless2, 
radd-rdiv, 
rmul_comm, 
rmul-rdiv-cancel2, 
radd-int, 
rmul-distrib2, 
rmul-identity1, 
req_inversion, 
rdiv_functionality, 
rmul_functionality, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
intformless_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
inrFormation, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
inlFormation, 
computeAll, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_pairFormation, 
imageElimination, 
addEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (\mforall{}c:\mBbbR{}\^{}n.  (a  \mneq{}  c  \mvee{}  b  \mneq{}  c)))
Date html generated:
2017_10_03-AM-10_59_46
Last ObjectModification:
2017_07_28-AM-08_22_15
Theory : reals
Home
Index