Nuprl Lemma : real-vec-dist-symmetry
∀[n:ℕ]. ∀[x,y:ℝ^n]. (d(x;y) = d(y;x))
Proof
Definitions occuring in Statement :
real-vec-dist: d(x;y)
,
real-vec: ℝ^n
,
req: x = y
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
real-vec-dist: d(x;y)
,
real-vec-norm: ||x||
,
prop: ℙ
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
real-vec-sub: X - Y
,
real-vec-mul: a*X
,
req-vec: req-vec(n;x;y)
,
all: ∀x:A. B[x]
,
nat: ℕ
,
real-vec: ℝ^n
,
rsub: x - y
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
rsqrt_functionality,
dot-product-nonneg,
real-vec-sub_wf,
dot-product_wf,
rleq_wf,
int-to-real_wf,
req_witness,
real-vec-dist_wf,
real_wf,
real-vec_wf,
nat_wf,
int_seg_wf,
req_wf,
rsub_wf,
rmul_wf,
rminus_wf,
radd_wf,
req_weakening,
uiff_transitivity,
req_functionality,
req_inversion,
rminus-as-rmul,
rminus-radd,
radd_comm,
radd_functionality,
rmul_functionality,
req_transitivity,
rminus-rminus,
real-vec-mul_wf,
dot-product_functionality,
dot-product-linearity2,
dot-product-comm,
rmul-assoc,
rmul-int,
rmul-one-both
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
dependent_set_memberEquality,
natural_numberEquality,
independent_isectElimination,
applyEquality,
lambdaEquality,
setElimination,
rename,
setEquality,
sqequalRule,
independent_functionElimination,
isect_memberEquality,
because_Cache,
lambdaFormation,
minusEquality,
productElimination,
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbR{}\^{}n]. (d(x;y) = d(y;x))
Date html generated:
2016_10_26-AM-10_25_18
Last ObjectModification:
2016_09_14-PM-06_40_19
Theory : reals
Home
Index