Nuprl Lemma : dot-product-nonneg

[n:ℕ]. ∀[x:ℝ^n].  (r0 ≤ x ⋅ x)


Proof




Definitions occuring in Statement :  dot-product: x ⋅ y real-vec: ^n rleq: x ≤ y int-to-real: r(n) nat: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  dot-product: x ⋅ y real-vec: ^n uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b so_apply: x[s] pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rleq: x ≤ y rnonneg: rnonneg(x) nat_plus: + subtype_rel: A ⊆B
Lemmas referenced :  nat_wf real_wf nat_plus_wf int-to-real_wf nat_plus_properties rsum_wf rsub_wf less_than'_wf le_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma itermConstant_wf itermSubtract_wf intformle_wf square-nonneg int_seg_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties subtract-add-cancel rmul_wf subtract_wf rsum_nonneg
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality applyEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache addEquality lambdaFormation independent_pairEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (r0  \mleq{}  x  \mcdot{}  x)



Date html generated: 2016_05_18-AM-09_47_56
Last ObjectModification: 2016_01_17-AM-02_52_15

Theory : reals


Home Index