Nuprl Lemma : dot-product_functionality
∀[n:ℕ]. ∀[x1,y1,x2,y2:ℝ^n]. (x1 ⋅ y1 = x2 ⋅ y2) supposing (req-vec(n;x1;x2) and req-vec(n;y1;y2))
Proof
Definitions occuring in Statement :
dot-product: x ⋅ y
,
req-vec: req-vec(n;x;y)
,
real-vec: ℝ^n
,
req: x = y
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
dot-product: x ⋅ y
,
req-vec: req-vec(n;x;y)
,
real-vec: ℝ^n
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
prop: ℙ
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
rmul_functionality,
rsum_functionality2,
req_functionality,
req_weakening,
le_wf,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_formula_prop_le_lemma,
itermConstant_wf,
itermSubtract_wf,
intformle_wf,
nat_wf,
real_wf,
req_wf,
all_wf,
int_seg_wf,
lelt_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
nat_properties,
subtract-add-cancel,
rmul_wf,
subtract_wf,
rsum_wf,
req_witness
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
lambdaEquality,
applyEquality,
dependent_set_memberEquality,
productElimination,
independent_pairFormation,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
because_Cache,
addEquality,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
functionEquality,
lambdaFormation
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x1,y1,x2,y2:\mBbbR{}\^{}n]. (x1 \mcdot{} y1 = x2 \mcdot{} y2) supposing (req-vec(n;x1;x2) and req-vec(n;y1;y2))
Date html generated:
2016_05_18-AM-09_47_11
Last ObjectModification:
2016_01_17-AM-02_51_07
Theory : reals
Home
Index