Nuprl Lemma : real-vec_wf
∀[n:ℕ]. (ℝ^n ∈ Type)
Proof
Definitions occuring in Statement : 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
nat: ℕ
Lemmas referenced : 
int_seg_wf, 
real_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (\mBbbR{}\^{}n  \mmember{}  Type)
Date html generated:
2016_05_18-AM-09_44_43
Last ObjectModification:
2015_12_27-PM-11_15_21
Theory : reals
Home
Index