Nuprl Lemma : real-vec_wf

[n:ℕ]. (ℝ^n ∈ Type)


Proof




Definitions occuring in Statement :  real-vec: ^n nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec: ^n nat:
Lemmas referenced :  int_seg_wf real_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (\mBbbR{}\^{}n  \mmember{}  Type)



Date html generated: 2016_05_18-AM-09_44_43
Last ObjectModification: 2015_12_27-PM-11_15_21

Theory : reals


Home Index