Nuprl Lemma : rmul_preserves_rneq_iff2
∀a,b,x:ℝ.  (x ≠ r0 
⇒ (a ≠ b 
⇐⇒ a * x ≠ b * x))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
Lemmas referenced : 
rmul_preserves_rneq_iff, 
rneq_wf, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
rneq_functionality, 
rmul_comm
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
independent_pairFormation, 
productElimination, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination
Latex:
\mforall{}a,b,x:\mBbbR{}.    (x  \mneq{}  r0  {}\mRightarrow{}  (a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  a  *  x  \mneq{}  b  *  x))
Date html generated:
2017_10_03-AM-08_35_23
Last ObjectModification:
2017_06_16-PM-01_02_55
Theory : reals
Home
Index