Nuprl Lemma : rmul_preserves_rneq_iff2

a,b,x:ℝ.  (x ≠ r0  (a ≠ ⇐⇒ x ≠ x))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a
Lemmas referenced :  rmul_preserves_rneq_iff rneq_wf rmul_wf int-to-real_wf real_wf rneq_functionality rmul_comm
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination independent_pairFormation productElimination isectElimination natural_numberEquality independent_isectElimination

Latex:
\mforall{}a,b,x:\mBbbR{}.    (x  \mneq{}  r0  {}\mRightarrow{}  (a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  a  *  x  \mneq{}  b  *  x))



Date html generated: 2017_10_03-AM-08_35_23
Last ObjectModification: 2017_06_16-PM-01_02_55

Theory : reals


Home Index