Nuprl Lemma : rmul_preserves_rneq_iff

a,b,x:ℝ.  (x ≠ r0  (a ≠ ⇐⇒ a ≠ b))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q rneq: x ≠ y or: P ∨ Q uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rneq_wf rmul_wf int-to-real_wf real_wf rmul_preserves_rneq rmul_reverses_rless_iff rless-implies-rless rless_wf rmul_preserves_rless rsub_wf itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination independent_functionElimination unionElimination inrFormation productElimination independent_isectElimination inlFormation because_Cache sqequalRule approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}a,b,x:\mBbbR{}.    (x  \mneq{}  r0  {}\mRightarrow{}  (a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  x  *  a  \mneq{}  x  *  b))



Date html generated: 2017_10_03-AM-08_35_16
Last ObjectModification: 2017_06_16-PM-00_46_33

Theory : reals


Home Index