Nuprl Lemma : rmul_preserves_rneq

a,b,x:ℝ.  (x ≠ r0  a ≠  a ≠ b)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T} rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q)
Lemmas referenced :  rneq_wf int-to-real_wf real_wf rmul_preserves_rless rless_wf rmul_wf rless-implies-rless real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf rless_functionality req_transitivity itermConstant_wf rmul_functionality rmul-identity1 req_weakening rmul_reverses_rless rmul_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis natural_numberEquality lemma_by_obid inrFormation sqequalRule productElimination independent_isectElimination independent_functionElimination because_Cache dependent_functionElimination inlFormation computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}a,b,x:\mBbbR{}.    (x  \mneq{}  r0  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  x  *  a  \mneq{}  x  *  b)



Date html generated: 2017_10_03-AM-08_28_32
Last ObjectModification: 2017_07_28-AM-07_25_18

Theory : reals


Home Index