Nuprl Lemma : length-rneq-real-vec-sep
∀n:ℕ. ∀x,v:ℝ^n.  (||v|| ≠ ||x|| ⇒ x ≠ v)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b, 
real-vec-norm: ||x||, 
real-vec: ℝ^n, 
rneq: x ≠ y, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
real-vec-sep: a ≠ b, 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uimplies: b supposing a
Lemmas referenced : 
rneq-iff-rabs, 
real-vec-norm_wf, 
real-vec-dist-lower-bound, 
rless_transitivity1, 
int-to-real_wf, 
rabs_wf, 
rsub_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
rneq_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
independent_isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,v:\mBbbR{}\^{}n.    (||v||  \mneq{}  ||x||  {}\mRightarrow{}  x  \mneq{}  v)
 Date html generated: 
2017_10_03-AM-11_02_23
 Last ObjectModification: 
2017_06_19-PM-06_55_43
Theory : reals
Home
Index