Nuprl Lemma : length-rneq-real-vec-sep

n:ℕ. ∀x,v:ℝ^n.  (||v|| ≠ ||x||  x ≠ v)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-norm: ||x|| real-vec: ^n rneq: x ≠ y nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q real-vec-sep: a ≠ b guard: {T} subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  rneq-iff-rabs real-vec-norm_wf real-vec-dist-lower-bound rless_transitivity1 int-to-real_wf rabs_wf rsub_wf real-vec-dist_wf real_wf rleq_wf rneq_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis productElimination independent_functionElimination natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,v:\mBbbR{}\^{}n.    (||v||  \mneq{}  ||x||  {}\mRightarrow{}  x  \mneq{}  v)



Date html generated: 2017_10_03-AM-11_02_23
Last ObjectModification: 2017_06_19-PM-06_55_43

Theory : reals


Home Index