Nuprl Lemma : real-vec-norm_wf

[n:ℕ]. ∀[x:ℝ^n].  (||x|| ∈ ℝ)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec: ^n real: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-norm: ||x|| prop: subtype_rel: A ⊆B
Lemmas referenced :  rsqrt_wf dot-product-nonneg dot-product_wf rleq_wf int-to-real_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (||x||  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-09_48_15
Last ObjectModification: 2015_12_27-PM-11_12_00

Theory : reals


Home Index