Nuprl Lemma : real-vec-norm_wf
∀[n:ℕ]. ∀[x:ℝ^n].  (||x|| ∈ ℝ)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
real-vec: ℝ^n
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-norm: ||x||
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
rsqrt_wf, 
dot-product-nonneg, 
dot-product_wf, 
rleq_wf, 
int-to-real_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (||x||  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-09_48_15
Last ObjectModification:
2015_12_27-PM-11_12_00
Theory : reals
Home
Index