Nuprl Lemma : real-vec-norm-mul
∀[n:ℕ]. ∀[x:ℝ^n]. ∀[a:ℝ].  (||a*x|| = (|a| * ||x||))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
real-vec-mul: a*X
, 
real-vec: ℝ^n
, 
rabs: |x|
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
rnexp-req-iff, 
less_than_wf, 
real-vec-norm_wf, 
real-vec-mul_wf, 
rmul_wf, 
rabs_wf, 
real-vec-norm-nonneg, 
rmul-nonneg-case1, 
zero-rleq-rabs, 
req_witness, 
real_wf, 
real-vec_wf, 
nat_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
dot-product_wf, 
req_functionality, 
real-vec-norm-squared, 
req_weakening, 
req_wf, 
uiff_transitivity, 
req_transitivity, 
dot-product-linearity2, 
rmul_functionality, 
rmul-assoc, 
req_inversion, 
rnexp2, 
square-nonneg, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
int-to-real_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rabs-rmul, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
isectElimination, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
productElimination, 
isect_memberEquality, 
lambdaFormation, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].  \mforall{}[a:\mBbbR{}].    (||a*x||  =  (|a|  *  ||x||))
Date html generated:
2017_10_03-AM-10_49_56
Last ObjectModification:
2017_07_28-AM-08_20_26
Theory : reals
Home
Index