Nuprl Lemma : real-vec-norm-mul

[n:ℕ]. ∀[x:ℝ^n]. ∀[a:ℝ].  (||a*x|| (|a| ||x||))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec-mul: a*X real-vec: ^n rabs: |x| req: y rmul: b real: nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: implies:  Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q nat: le: A ≤ B false: False not: ¬A uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  rnexp-req-iff less_than_wf real-vec-norm_wf real-vec-mul_wf rmul_wf rabs_wf real-vec-norm-nonneg rmul-nonneg-case1 zero-rleq-rabs req_witness real_wf real-vec_wf nat_wf rnexp_wf false_wf le_wf dot-product_wf req_functionality real-vec-norm-squared req_weakening req_wf uiff_transitivity req_transitivity dot-product-linearity2 rmul_functionality rmul-assoc req_inversion rnexp2 square-nonneg real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rabs-rmul rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed hypothesis isectElimination independent_functionElimination independent_isectElimination because_Cache productElimination isect_memberEquality lambdaFormation computeAll lambdaEquality int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].  \mforall{}[a:\mBbbR{}].    (||a*x||  =  (|a|  *  ||x||))



Date html generated: 2017_10_03-AM-10_49_56
Last ObjectModification: 2017_07_28-AM-08_20_26

Theory : reals


Home Index