Nuprl Lemma : real-vec-norm-squared
∀[n:ℕ]. ∀[x:ℝ^n].  (||x||^2 = x ⋅ x)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x ⋅ y
, 
real-vec: ℝ^n
, 
rnexp: x^k1
, 
req: x = y
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
real-vec-norm: ||x||
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rnexp_wf, 
false_wf, 
le_wf, 
real-vec-norm_wf, 
dot-product_wf, 
real-vec_wf, 
nat_wf, 
rmul_wf, 
rsqrt_squared, 
dot-product-nonneg, 
rleq_wf, 
int-to-real_wf, 
req_functionality, 
rnexp2, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (||x||\^{}2  =  x  \mcdot{}  x)
Date html generated:
2016_05_18-AM-09_48_48
Last ObjectModification:
2015_12_27-PM-11_11_25
Theory : reals
Home
Index