Nuprl Lemma : rsqrt_squared
∀[x:{x:ℝ| r0 ≤ x} ]. ((rsqrt(x) * rsqrt(x)) = x)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
req_witness, 
equal_wf, 
sq_stable__req, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
rleq_wf, 
and_wf, 
real_wf, 
set_wf, 
rsqrt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
applyEquality, 
setEquality, 
because_Cache
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  ((rsqrt(x)  *  rsqrt(x))  =  x)
Date html generated:
2016_05_18-AM-09_43_29
Last ObjectModification:
2016_01_17-AM-02_49_31
Theory : reals
Home
Index