Nuprl Lemma : rsqrt_squared

[x:{x:ℝr0 ≤ x} ]. ((rsqrt(x) rsqrt(x)) x)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] and: P ∧ Q prop: so_apply: x[s] all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B
Lemmas referenced :  req_witness equal_wf sq_stable__req rmul_wf req_wf int-to-real_wf rleq_wf and_wf real_wf set_wf rsqrt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality natural_numberEquality setElimination rename lambdaFormation independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination applyEquality setEquality because_Cache

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  ((rsqrt(x)  *  rsqrt(x))  =  x)



Date html generated: 2016_05_18-AM-09_43_29
Last ObjectModification: 2016_01_17-AM-02_49_31

Theory : reals


Home Index