Nuprl Lemma : Cauchy-Schwarz-non-equality1

n:ℕ. ∀x,y:ℝ^n.  ((r0 < ||y||)  (∀a:ℝx ≠ a*y)  (|x⋅y| < (||x|| ||y||)))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-norm: ||x|| dot-product: x⋅y real-vec-mul: a*X real-vec: ^n rless: x < y rabs: |x| rmul: b int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] real-vec: ^n uimplies: supposing a nat: subtype_rel: A ⊆B uiff: uiff(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top real-vec-mul: a*X
Lemmas referenced :  Cauchy-Schwarz-strict real-vec-norm-positive-iff all_wf real_wf real-vec-sep_wf real-vec-mul_wf rless_wf int-to-real_wf real-vec-norm_wf real-vec_wf nat_wf rneq-symmetry rdiv_wf real-vec-sep-iff rmul_wf rneq-iff-rabs rneq_wf exists_wf int_seg_wf rmul_preserves_rless rabs_wf rsub_wf rabs-neq-zero radd_wf rminus_wf rmul-zero-both rinv_wf2 rmul_comm itermSubtract_wf itermVar_wf itermAdd_wf itermMinus_wf req-iff-rsub-is-0 rless_functionality req_transitivity rmul_functionality req_weakening rabs_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma itermMultiply_wf itermConstant_wf req_inversion rabs-rmul radd_functionality rminus_functionality rmul-rinv real_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_pairFormation independent_functionElimination because_Cache rename isectElimination sqequalRule lambdaEquality natural_numberEquality applyEquality independent_isectElimination dependent_pairFormation setElimination approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    ((r0  <  ||y||)  {}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  x  \mneq{}  a*y)  {}\mRightarrow{}  (|x\mcdot{}y|  <  (||x||  *  ||y||)))



Date html generated: 2017_10_03-AM-11_02_44
Last ObjectModification: 2017_06_19-PM-05_19_37

Theory : reals


Home Index