Nuprl Lemma : rneq-symmetry
∀x,y:ℝ.  (x ≠ y 
⇒ y ≠ x)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
guard: {T}
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rless_wf, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
cut, 
hypothesis, 
inrFormation, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
inlFormation
Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  {}\mRightarrow{}  y  \mneq{}  x)
Date html generated:
2016_10_26-AM-09_08_04
Last ObjectModification:
2016_10_14-PM-05_45_59
Theory : reals
Home
Index