Nuprl Lemma : rneq-symmetry

x,y:ℝ.  (x ≠  y ≠ x)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q guard: {T} member: t ∈ T prop: uall: [x:A]. B[x]
Lemmas referenced :  rless_wf rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin sqequalRule cut hypothesis inrFormation introduction extract_by_obid isectElimination hypothesisEquality inlFormation

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  {}\mRightarrow{}  y  \mneq{}  x)



Date html generated: 2016_10_26-AM-09_08_04
Last ObjectModification: 2016_10_14-PM-05_45_59

Theory : reals


Home Index