Nuprl Lemma : real-vec-sep_wf
∀[n:ℕ]. ∀[a,b:ℝ^n].  (a ≠ b ∈ ℙ)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-sep: a ≠ b
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}\^{}n].    (a  \mneq{}  b  \mmember{}  \mBbbP{})
Date html generated:
2016_10_26-AM-10_29_15
Last ObjectModification:
2016_09_24-PM-10_58_07
Theory : reals
Home
Index