Nuprl Lemma : real-vec-sep_wf

[n:ℕ]. ∀[a,b:ℝ^n].  (a ≠ b ∈ ℙ)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-sep: a ≠ b subtype_rel: A ⊆B prop:
Lemmas referenced :  rless_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality applyEquality lambdaEquality setElimination rename setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}\^{}n].    (a  \mneq{}  b  \mmember{}  \mBbbP{})



Date html generated: 2016_10_26-AM-10_29_15
Last ObjectModification: 2016_09_24-PM-10_58_07

Theory : reals


Home Index