Nuprl Lemma : proj-sep_wf

[n:ℕ]. ∀[a,b:ℙ^n].  (a ≠ b ∈ ℙ)


Proof




Definitions occuring in Statement :  proj-sep: a ≠ b real-proj: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proj-sep: a ≠ b prop: and: P ∧ Q nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B
Lemmas referenced :  real-vec-sep_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf punit_wf real-vec_wf req_wf real-vec-norm_wf int-to-real_wf real-vec-mul_wf real-proj_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality setEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbP{}\^{}n].    (a  \mneq{}  b  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_17_24
Last ObjectModification: 2017_06_18-PM-01_52_11

Theory : inner!product!spaces


Home Index