Nuprl Lemma : proj-norm-positive

n:ℕ. ∀a:ℙ^n.  (r0 < ||a||)


Proof




Definitions occuring in Statement :  real-proj: ^n real-vec-norm: ||x|| rless: x < y int-to-real: r(n) nat: all: x:A. B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] real-proj: ^n member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: sq_stable: SqStable(P) squash: T iff: ⇐⇒ Q rev_implies:  Q real-vec: ^n
Lemmas referenced :  sq_stable__rless int-to-real_wf real-vec-norm_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf real-proj_wf nat_wf real-vec-norm-positive-iff rneq_wf rneq-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid dependent_functionElimination isectElimination natural_numberEquality hypothesis dependent_set_memberEquality addEquality hypothesisEquality productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed imageElimination applyEquality because_Cache

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbP{}\^{}n.    (r0  <  ||a||)



Date html generated: 2017_10_05-AM-00_17_03
Last ObjectModification: 2017_06_18-PM-00_51_42

Theory : inner!product!spaces


Home Index