Nuprl Lemma : sq_stable__rless

x,y:ℝ.  SqStable(x < y)


Proof




Definitions occuring in Statement :  rless: x < y real: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] sq_stable: SqStable(P) implies:  Q member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  rlessw_wf rless_wf squash_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality imageElimination dependent_set_memberEquality hypothesis isectElimination

Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  <  y)



Date html generated: 2016_05_18-AM-07_04_26
Last ObjectModification: 2015_12_28-AM-00_35_43

Theory : reals


Home Index