Nuprl Lemma : sq_stable__rless
∀x,y:ℝ.  SqStable(x < y)
Proof
Definitions occuring in Statement : 
rless: x < y
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
rlessw_wf, 
rless_wf, 
squash_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
dependent_set_memberEquality, 
hypothesis, 
isectElimination
Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  <  y)
Date html generated:
2016_05_18-AM-07_04_26
Last ObjectModification:
2015_12_28-AM-00_35_43
Theory : reals
Home
Index