Step
*
of Lemma
rv-isometry-inverse
No Annotations
∀[rv:InnerProductSpace]. ∀[f,g:Point(rv) ⟶ Point(rv)].
(Isometry(f)) supposing (Isometry(g) and (∀x:Point(rv). g (f x) ≡ x))
BY
{ (Auto
THEN (InstLemma `rv-isometry-injective` [⌜rv⌝;⌜g⌝]⋅ THENA Auto)
THEN InstLemma `rv-isometry-implies-functional` [⌜rv⌝;⌜g⌝]⋅
THEN Auto) }
1
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. g : Point(rv) ⟶ Point(rv)
4. ∀x:Point(rv). g (f x) ≡ x
5. Isometry(g)
6. ∀x,y:Point(rv). (g x ≡ g y
⇒ x ≡ y)
7. ∀x,y:Point(rv). (x ≡ y
⇒ g x ≡ g y)
⊢ Isometry(f)
Latex:
Latex:
No Annotations
\mforall{}[rv:InnerProductSpace]. \mforall{}[f,g:Point(rv) {}\mrightarrow{} Point(rv)].
(Isometry(f)) supposing (Isometry(g) and (\mforall{}x:Point(rv). g (f x) \mequiv{} x))
By
Latex:
(Auto
THEN (InstLemma `rv-isometry-injective` [\mkleeneopen{}rv\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{}]\mcdot{} THENA Auto)
THEN InstLemma `rv-isometry-implies-functional` [\mkleeneopen{}rv\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index