Step * of Lemma rv-norm-triangle-inequality

No Annotations
[rv:InnerProductSpace]. ∀[x,y:Point(rv)].  (||x y|| ≤ (||x|| ||y||))
BY
(Auto THEN (InstLemma `rnexp-rleq-iff` [⌜||x y||⌝;⌜||x|| ||y||⌝;⌜2⌝]⋅ THENA Auto) THEN BHyp -1 THEN Thin (-1)) }

1
1. rv InnerProductSpace
2. Point(rv)
3. Point(rv)
⊢ ||x y||^2 ≤ ||x|| ||y||^2


Latex:


Latex:
No  Annotations
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point(rv)].    (||x  +  y||  \mleq{}  (||x||  +  ||y||))


By


Latex:
(Auto
  THEN  (InstLemma  `rnexp-rleq-iff`  [\mkleeneopen{}||x  +  y||\mkleeneclose{};\mkleeneopen{}||x||  +  ||y||\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  BHyp  -1
  THEN  Thin  (-1))




Home Index