Nuprl Lemma : rv-norm-triangle-inequality
∀[rv:InnerProductSpace]. ∀[x,y:Point(rv)].  (||x + y|| ≤ (||x|| + ||y||))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
inner-product-space: InnerProductSpace
, 
rv-add: x + y
, 
rleq: x ≤ y
, 
radd: a + b
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
guard: {T}
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
itermConstant: "const"
Lemmas referenced : 
rnexp-rleq-iff, 
rv-norm_wf, 
rv-add_wf, 
inner-product-space_subtype, 
radd_wf, 
rv-norm-nonneg, 
radd-non-neg, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
le_witness_for_triv, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rnexp_wf, 
istype-void, 
istype-le, 
rv-ip_wf, 
rmul_wf, 
int-to-real_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
rleq_functionality, 
rv-norm-squared, 
req_weakening, 
rnexp2, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
radd_functionality, 
req_inversion, 
radd-preserves-rleq, 
rminus_wf, 
itermMinus_wf, 
req_transitivity, 
rv-ip-add, 
rv-ip-add2, 
real_term_value_minus_lemma, 
rv-ip-symmetry, 
rv-ip-rleq, 
rleq-implies-rleq, 
real_term_polynomial, 
nat_plus_wf, 
rsub_wf, 
less_than'_wf, 
false_wf, 
rleq-int, 
req_wf, 
rleq_wf, 
real_wf, 
rmul_preserves_rleq2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
Error :memTop, 
universeIsType, 
voidElimination, 
productElimination, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
independent_pairFormation, 
lambdaFormation_alt, 
int_eqEquality, 
voidEquality, 
isect_memberEquality, 
intEquality, 
computeAll, 
axiomEquality, 
minusEquality, 
independent_pairEquality, 
lambdaFormation, 
productEquality, 
setEquality, 
lambdaEquality, 
isect_memberFormation
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point(rv)].    (||x  +  y||  \mleq{}  (||x||  +  ||y||))
Date html generated:
2020_05_20-PM-01_11_48
Last ObjectModification:
2019_12_09-PM-11_44_22
Theory : inner!product!spaces
Home
Index