Nuprl Lemma : rv-ip-rleq

[rv:InnerProductSpace]. ∀[a,b:Point].  (a ⋅ b ≤ (||a|| ||b||))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace rleq: x ≤ y rmul: b ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B guard: {T} subtype_rel: A ⊆B prop: uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False real:
Lemmas referenced :  rabs-bounds rv-ip_wf rv-Cauchy-Schwarz' rleq_transitivity rabs_wf rmul_wf rv-norm_wf real_wf rleq_wf int-to-real_wf req_wf less_than'_wf rsub_wf nat_plus_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_pairFormation applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality sqequalRule independent_isectElimination dependent_functionElimination independent_pairEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality voidElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (a  \mcdot{}  b  \mleq{}  (||a||  *  ||b||))



Date html generated: 2017_10_04-PM-11_52_15
Last ObjectModification: 2017_07_28-AM-08_54_01

Theory : inner!product!spaces


Home Index