Nuprl Lemma : rv-ip-rleq
∀[rv:InnerProductSpace]. ∀[a,b:Point].  (a ⋅ b ≤ (||a|| * ||b||))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
rmul: a * b
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
real: ℝ
Lemmas referenced : 
rabs-bounds, 
rv-ip_wf, 
rv-Cauchy-Schwarz', 
rleq_transitivity, 
rabs_wf, 
rmul_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
less_than'_wf, 
rsub_wf, 
nat_plus_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
sqequalRule, 
independent_isectElimination, 
dependent_functionElimination, 
independent_pairEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (a  \mcdot{}  b  \mleq{}  (||a||  *  ||b||))
Date html generated:
2017_10_04-PM-11_52_15
Last ObjectModification:
2017_07_28-AM-08_54_01
Theory : inner!product!spaces
Home
Index