Nuprl Lemma : rv-Cauchy-Schwarz'

[rv:InnerProductSpace]. ∀[a,b:Point].  (|a ⋅ b| ≤ (||a|| ||b||))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace rleq: x ≤ y rabs: |x| rmul: b ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q prop: sq_stable: SqStable(P) implies:  Q all: x:A. B[x] uimplies: supposing a squash: T guard: {T} nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  rv-Cauchy-Schwarz sq_stable__rleq rabs_wf rv-ip_wf rmul_wf rv-norm_wf real_wf rleq_wf int-to-real_wf req_wf square-rleq-implies rmul-nonneg-case1 rv-norm-nonneg ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rnexp_wf false_wf le_wf rleq_functionality req_weakening rmul_functionality req_inversion rv-norm-squared rleq_functionality_wrt_implies rleq_weakening_equal rleq_transitivity rleq_weakening rnexp-rmul rnexp2-nonneg rabs-rnexp rabs-of-nonneg
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality sqequalRule independent_functionElimination dependent_functionElimination because_Cache independent_isectElimination independent_pairFormation imageMemberEquality baseClosed imageElimination instantiate dependent_set_memberEquality lambdaFormation productElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (|a  \mcdot{}  b|  \mleq{}  (||a||  *  ||b||))



Date html generated: 2017_10_04-PM-11_52_12
Last ObjectModification: 2017_03_10-PM-02_28_59

Theory : inner!product!spaces


Home Index