Nuprl Lemma : rv-Cauchy-Schwarz

[rv:InnerProductSpace]. ∀[a,b:Point].  (a ⋅ b^2 ≤ (a^2 b^2))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace ss-point: Point rleq: x ≤ y rnexp: x^k1 rmul: b uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  ss-eq: x ≡ y rev_uimplies: rev_uimplies(P;Q) rsub: y uiff: uiff(P;Q) rneq: x ≠ y or: P ∨ Q guard: {T} subtype_rel: A ⊆B all: x:A. B[x] rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a stable: Stable{P} prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rmul-int rv-ip0 ss-eq_weakening rv-ip_functionality rleq_weakening_equal rnexp2 radd-rminus-assoc radd-int rmul-identity1 rminus-as-rmul rmul-distrib2 radd-zero-both radd-preserves-rleq radd_comm radd-ac radd-assoc rmul-ac rminus_functionality rmul-assoc req_inversion rmul-zero-both rmul_over_rminus rmul-distrib rmul-rdiv-cancel2 uiff_transitivity rminus_wf rmul_preserves_rleq2 rsub_functionality rv-ip-mul2 rmul_functionality rv-ip-mul req_transitivity radd_functionality rv-ip-sub-squared req_weakening rleq_functionality radd_wf int-to-real_wf rless_wf rdiv_wf rv-mul_wf rv-sub_wf rv-ip-nonneg rv-ip-positive minimal-not-not-excluded-middle minimal-double-negation-hyp-elim rleq_wf not_wf rv-0_wf ss-sep_wf or_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf nat_plus_wf rsub_wf less_than'_wf rmul_wf rv-ip_wf le_wf false_wf rnexp_wf stable__rleq
Rules used in proof :  multiplyEquality addEquality inrFormation unionElimination independent_functionElimination functionEquality voidElimination isect_memberEquality instantiate equalitySymmetry equalityTransitivity axiomEquality minusEquality applyEquality because_Cache independent_pairEquality productElimination dependent_functionElimination lambdaEquality independent_isectElimination hypothesisEquality hypothesis lambdaFormation independent_pairFormation sqequalRule natural_numberEquality dependent_set_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (a  \mcdot{}  b\^{}2  \mleq{}  (a\^{}2  *  b\^{}2))



Date html generated: 2016_11_08-AM-09_17_18
Last ObjectModification: 2016_10_31-PM-03_43_11

Theory : inner!product!spaces


Home Index