Nuprl Lemma : rv-Cauchy-Schwarz
∀[rv:InnerProductSpace]. ∀[a,b:Point].  (a ⋅ b^2 ≤ (a^2 * b^2))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
rmul: a * b
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
ss-eq: x ≡ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
uiff: uiff(P;Q)
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rmul-int, 
rv-ip0, 
ss-eq_weakening, 
rv-ip_functionality, 
rleq_weakening_equal, 
rnexp2, 
radd-rminus-assoc, 
radd-int, 
rmul-identity1, 
rminus-as-rmul, 
rmul-distrib2, 
radd-zero-both, 
radd-preserves-rleq, 
radd_comm, 
radd-ac, 
radd-assoc, 
rmul-ac, 
rminus_functionality, 
rmul-assoc, 
req_inversion, 
rmul-zero-both, 
rmul_over_rminus, 
rmul-distrib, 
rmul-rdiv-cancel2, 
uiff_transitivity, 
rminus_wf, 
rmul_preserves_rleq2, 
rsub_functionality, 
rv-ip-mul2, 
rmul_functionality, 
rv-ip-mul, 
req_transitivity, 
radd_functionality, 
rv-ip-sub-squared, 
req_weakening, 
rleq_functionality, 
radd_wf, 
int-to-real_wf, 
rless_wf, 
rdiv_wf, 
rv-mul_wf, 
rv-sub_wf, 
rv-ip-nonneg, 
rv-ip-positive, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
rleq_wf, 
not_wf, 
rv-0_wf, 
ss-sep_wf, 
or_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
nat_plus_wf, 
rsub_wf, 
less_than'_wf, 
rmul_wf, 
rv-ip_wf, 
le_wf, 
false_wf, 
rnexp_wf, 
stable__rleq
Rules used in proof : 
multiplyEquality, 
addEquality, 
inrFormation, 
unionElimination, 
independent_functionElimination, 
functionEquality, 
voidElimination, 
isect_memberEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
applyEquality, 
because_Cache, 
independent_pairEquality, 
productElimination, 
dependent_functionElimination, 
lambdaEquality, 
independent_isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (a  \mcdot{}  b\^{}2  \mleq{}  (a\^{}2  *  b\^{}2))
Date html generated:
2016_11_08-AM-09_17_18
Last ObjectModification:
2016_10_31-PM-03_43_11
Theory : inner!product!spaces
Home
Index