Nuprl Lemma : radd-non-neg

x,y:ℝ.  ((r0 ≤ x)  (r0 ≤ y)  (r0 ≤ (x y)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T}
Lemmas referenced :  rleq_wf int-to-real_wf real_wf radd-preserves-rleq radd_wf rleq_transitivity rleq_functionality radd-zero req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality productElimination independent_isectElimination because_Cache

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (r0  \mleq{}  (x  +  y)))



Date html generated: 2016_05_18-AM-07_10_05
Last ObjectModification: 2015_12_28-AM-00_38_38

Theory : reals


Home Index