Nuprl Lemma : rnexp-rleq-iff

x,y:ℝ.  ((r0 ≤ x)  (r0 ≤ y)  (∀n:ℕ+(x ≤ ⇐⇒ x^n ≤ y^n)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a not: ¬A guard: {T} false: False
Lemmas referenced :  rnexp-rleq rleq_wf rnexp_wf nat_plus_wf int-to-real_wf real_wf not-rless rnexp-rless rless_transitivity1 nat_plus_subtype_nat rless_irreflexivity rless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis applyEquality because_Cache sqequalRule isectElimination natural_numberEquality independent_isectElimination voidElimination

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  \mleq{}  y\^{}n)))



Date html generated: 2016_05_18-AM-07_19_36
Last ObjectModification: 2015_12_28-AM-00_45_58

Theory : reals


Home Index