Nuprl Lemma : rnexp-rleq-iff
∀x,y:ℝ.  ((r0 ≤ x) ⇒ (r0 ≤ y) ⇒ (∀n:ℕ+. (x ≤ y ⇐⇒ x^n ≤ y^n)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rnexp: x^k1, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
not: ¬A, 
guard: {T}, 
false: False
Lemmas referenced : 
rnexp-rleq, 
rleq_wf, 
rnexp_wf, 
nat_plus_wf, 
int-to-real_wf, 
real_wf, 
not-rless, 
rnexp-rless, 
rless_transitivity1, 
nat_plus_subtype_nat, 
rless_irreflexivity, 
rless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
voidElimination
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  \mleq{}  y\^{}n)))
Date html generated:
2016_05_18-AM-07_19_36
Last ObjectModification:
2015_12_28-AM-00_45_58
Theory : reals
Home
Index