Nuprl Lemma : rnexp-rleq
∀x,y:ℝ.  ((r0 ≤ x) 
⇒ (x ≤ y) 
⇒ (∀n:ℕ. (x^n ≤ y^n)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
rge: x ≥ y
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
less_than'_wf, 
rsub_wf, 
rnexp_wf, 
nat_plus_properties, 
nat_plus_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
false_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rmul_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq_weakening_equal, 
rleq_functionality, 
rnexp_unroll, 
rnexp-nonneg, 
rleq_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2, 
rmul_preserves_rleq2, 
rleq_transitivity, 
rleq-implies-rleq, 
real_term_polynomial, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
applyEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
inlFormation, 
productEquality, 
isect_memberFormation
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (x  \mleq{}  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (x\^{}n  \mleq{}  y\^{}n)))
Date html generated:
2017_10_03-AM-08_33_15
Last ObjectModification:
2017_07_28-AM-07_28_13
Theory : reals
Home
Index