Step
*
1
of Lemma
rv-orthogonal-compose
1. rv : InnerProductSpace
2. f : Point ⟶ Point
3. g : Point ⟶ Point
4. f 0 ≡ 0
5. Isometry(f)
6. g 0 ≡ 0
7. Isometry(g)
8. ∀x,y:Point.  (x ≡ y 
⇒ f x ≡ f y)
⊢ f (g 0) ≡ 0
BY
{ (FHyp (-1) [6] THEN Auto) }
Latex:
Latex:
1.  rv  :  InnerProductSpace
2.  f  :  Point  {}\mrightarrow{}  Point
3.  g  :  Point  {}\mrightarrow{}  Point
4.  f  0  \mequiv{}  0
5.  Isometry(f)
6.  g  0  \mequiv{}  0
7.  Isometry(g)
8.  \mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y)
\mvdash{}  f  (g  0)  \mequiv{}  0
By
Latex:
(FHyp  (-1)  [6]  THEN  Auto)
Home
Index