Nuprl Lemma : rv-orthogonal-compose

[rv:InnerProductSpace]. ∀[f,g:Point ⟶ Point].  (Orthogonal(f g)) supposing (Orthogonal(g) and Orthogonal(f))


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-point: Point compose: g uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: guard: {T} false: False not: ¬A ss-eq: x ≡ y rv-orthogonal: Orthogonal(f) compose: g cand: c∧ B rev_implies:  Q subtype_rel: A ⊆B and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ss-eq_transitivity rv-0_wf rv-orthogonal_wf real_wf rv-mul_wf rv-ip_wf req_witness rv-add_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-sep_wf rv-isometry-compose ss-point_wf compose_wf rv-orthogonal-iff rv-orthogonal-implies-functional
Rules used in proof :  voidElimination functionEquality equalitySymmetry equalityTransitivity isect_memberEquality instantiate lambdaEquality independent_pairEquality independent_isectElimination independent_pairFormation functionExtensionality sqequalRule because_Cache applyEquality productElimination hypothesis independent_functionElimination dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f,g:Point  {}\mrightarrow{}  Point].
    (Orthogonal(f  o  g))  supposing  (Orthogonal(g)  and  Orthogonal(f))



Date html generated: 2016_11_08-AM-09_20_24
Last ObjectModification: 2016_11_02-PM-11_30_30

Theory : inner!product!spaces


Home Index