Nuprl Lemma : rv-orthogonal-iff
∀[rv:InnerProductSpace]. ∀f:Point(rv) ⟶ Point(rv). (Orthogonal(f) 
⇐⇒ f 0 ≡ 0 ∧ Isometry(f))
Proof
Definitions occuring in Statement : 
rv-isometry: Isometry(f)
, 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
ss-eq: Error :ss-eq, 
not: ¬A
, 
false: False
, 
rv-isometry: Isometry(f)
, 
rv-orthogonal: Orthogonal(f)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
rv-sub: x - y
, 
rv-minus: -x
, 
pi2: snd(t)
, 
rtermConstant: "const"
, 
rtermMultiply: left "*" right
, 
pi1: fst(t)
, 
rtermVar: rtermVar(var)
, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
stable: Stable{P}
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
real: ℝ
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
rational-approx: (x within 1/n)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rge: x ≥ y
Lemmas referenced : 
rv-orthogonal_wf, 
Error :ss-eq_wf, 
rv-0_wf, 
rv-isometry_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
rv-ip_wf, 
rv-isometry-implies-functional, 
rv-orthogonal-isometry, 
int-to-real_wf, 
rv-mul_wf, 
Error :ss-eq_functionality, 
Error :ss-eq_weakening, 
rv-mul0, 
Error :ss-eq_inversion, 
rv-orthogonal-iff-norm-preserving, 
real_wf, 
rv-add_wf, 
rless_wf, 
rless-int, 
rdiv_wf, 
rv-midpoint-unique, 
req_functionality, 
rdiv_functionality, 
req_weakening, 
rv-mul_functionality, 
rv-0-add, 
uiff_transitivity, 
rv-add_functionality, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rinv_wf2, 
rmul_wf, 
rv-mul-mul, 
req_transitivity, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rv-mul1, 
istype-nat, 
subtract-1-ge-0, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
itermMinus_wf, 
rminus_wf, 
itermAdd_wf, 
rsub_wf, 
radd_wf, 
subtract_wf, 
rv-mul-add, 
radd_functionality, 
req_inversion, 
rsub-int, 
radd-int, 
squash_wf, 
true_wf, 
rminus-int, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
Error :ss-eq_transitivity, 
nat_plus_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
nat_plus_properties, 
nat_plus_subtype_nat, 
rv-minus_wf, 
rv-sub-is-zero, 
rv-add-minus2, 
rmul-int, 
rv-add-comm, 
rtermVar_wf, 
rtermConstant_wf, 
rtermDivide_wf, 
rtermMultiply_wf, 
assert-rat-term-eq2, 
decidable__le, 
istype-le, 
int_term_value_minus_lemma, 
rv-minus_functionality, 
stable_req, 
minimal-double-negation-hyp-elim, 
false_wf, 
rneq_wf, 
not_wf, 
req_wf, 
rmul-int-rdiv, 
minus-one-mul, 
mul-associates, 
one-mul, 
req-same, 
minimal-not-not-excluded-middle, 
rv-norm-is-zero, 
not-rneq, 
rless_irreflexivity, 
rless_transitivity1, 
rv-norm-nonneg, 
small-reciprocal-real, 
rv-norm-triangle-inequality2, 
rleq_wf, 
iff_weakening_uiff, 
rleq_functionality, 
rv-norm_functionality, 
rv-sub_functionality, 
rv-mul-sub, 
rabs_wf, 
rv-norm-mul, 
r-archimedean-implies, 
rational-approx-property, 
int_term_value_mul_lemma, 
nequal_wf, 
int_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int-rdiv_wf, 
rmul_functionality, 
rabs_functionality, 
rsub_functionality, 
int-rdiv-req, 
less_than_wf, 
set_subtype_base, 
rneq-int, 
zero-rleq-rabs, 
rational-approx_wf, 
rabs-difference-symmetry, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rmul_functionality_wrt_rleq2, 
rleq_transitivity, 
rleq_weakening, 
rv-sub0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
sqequalRule, 
productIsType, 
applyEquality, 
because_Cache, 
functionIsType, 
instantiate, 
independent_isectElimination, 
lambdaEquality_alt, 
productElimination, 
independent_pairEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isectIsTypeImplies, 
natural_numberEquality, 
baseClosed, 
imageMemberEquality, 
inrFormation_alt, 
closedConclusion, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
dependent_pairFormation_alt, 
intWeakElimination, 
minusEquality, 
addEquality, 
imageElimination, 
unionElimination, 
equalityIstype, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
unionEquality, 
functionEquality, 
unionIsType, 
intEquality, 
sqequalBase, 
baseApply, 
inlFormation_alt
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  (Orthogonal(f)  \mLeftarrow{}{}\mRightarrow{}  f  0  \mequiv{}  0  \mwedge{}  Isometry(f))
Date html generated:
2020_05_20-PM-01_12_35
Last ObjectModification:
2020_01_08-AM-11_05_25
Theory : inner!product!spaces
Home
Index