Nuprl Lemma : rv-orthogonal-iff

[rv:InnerProductSpace]. ∀f:Point(rv) ⟶ Point(rv). (Orthogonal(f) ⇐⇒ 0 ≡ 0 ∧ Isometry(f))


Proof




Definitions occuring in Statement :  rv-isometry: Isometry(f) rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace rv-0: 0 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a ss-eq: Error :ss-eq,  not: ¬A false: False rv-isometry: Isometry(f) rv-orthogonal: Orthogonal(f) cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True less_than': less_than'(a;b) squash: T less_than: a < b or: P ∨ Q rneq: x ≠ y rdiv: (x/y) req_int_terms: t1 ≡ t2 top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nat: decidable: Dec(P) nat_plus: + rv-sub: y rv-minus: -x pi2: snd(t) rtermConstant: "const" rtermMultiply: left "*" right pi1: fst(t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind rtermDivide: num "/" denom rat_term_to_real: rat_term_to_real(f;t) stable: Stable{P} sq_exists: x:A [B[x]] rless: x < y real: nequal: a ≠ b ∈  int_nzero: -o rational-approx: (x within 1/n) so_apply: x[s] so_lambda: λ2x.t[x] rge: x ≥ y
Lemmas referenced :  rv-orthogonal_wf Error :ss-eq_wf,  rv-0_wf rv-isometry_wf Error :ss-point_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  req_witness rv-norm_wf rv-sub_wf rv-ip_wf rv-isometry-implies-functional rv-orthogonal-isometry int-to-real_wf rv-mul_wf Error :ss-eq_functionality,  Error :ss-eq_weakening,  rv-mul0 Error :ss-eq_inversion,  rv-orthogonal-iff-norm-preserving real_wf rv-add_wf rless_wf rless-int rdiv_wf rv-midpoint-unique req_functionality rdiv_functionality req_weakening rv-mul_functionality rv-0-add uiff_transitivity rv-add_functionality itermVar_wf itermConstant_wf itermMultiply_wf itermSubtract_wf rinv_wf2 rmul_wf rv-mul-mul req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rv-mul1 istype-nat subtract-1-ge-0 istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf intformle_wf intformand_wf full-omega-unsat nat_properties itermMinus_wf rminus_wf itermAdd_wf rsub_wf radd_wf subtract_wf rv-mul-add radd_functionality req_inversion rsub-int radd-int squash_wf true_wf rminus-int real_term_value_add_lemma real_term_value_minus_lemma Error :ss-eq_transitivity,  nat_plus_wf int_formula_prop_not_lemma intformnot_wf decidable__lt nat_plus_properties nat_plus_subtype_nat rv-minus_wf rv-sub-is-zero rv-add-minus2 rmul-int rv-add-comm rtermVar_wf rtermConstant_wf rtermDivide_wf rtermMultiply_wf assert-rat-term-eq2 decidable__le istype-le int_term_value_minus_lemma rv-minus_functionality stable_req minimal-double-negation-hyp-elim false_wf rneq_wf not_wf req_wf rmul-int-rdiv minus-one-mul mul-associates one-mul req-same minimal-not-not-excluded-middle rv-norm-is-zero not-rneq rless_irreflexivity rless_transitivity1 rv-norm-nonneg small-reciprocal-real rv-norm-triangle-inequality2 rleq_wf iff_weakening_uiff rleq_functionality rv-norm_functionality rv-sub_functionality rv-mul-sub rabs_wf rv-norm-mul r-archimedean-implies rational-approx-property int_term_value_mul_lemma nequal_wf int_subtype_base int_formula_prop_eq_lemma intformeq_wf int-rdiv_wf rmul_functionality rabs_functionality rsub_functionality int-rdiv-req less_than_wf set_subtype_base rneq-int zero-rleq-rabs rational-approx_wf rabs-difference-symmetry rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rmul_functionality_wrt_rleq2 rleq_transitivity rleq_weakening rv-sub0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt independent_pairFormation universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis sqequalRule productIsType applyEquality because_Cache functionIsType instantiate independent_isectElimination lambdaEquality_alt productElimination independent_pairEquality voidElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt setElimination rename equalityTransitivity equalitySymmetry independent_functionElimination isectIsTypeImplies natural_numberEquality baseClosed imageMemberEquality inrFormation_alt closedConclusion approximateComputation int_eqEquality Error :memTop,  dependent_pairFormation_alt intWeakElimination minusEquality addEquality imageElimination unionElimination equalityIstype multiplyEquality dependent_set_memberEquality_alt unionEquality functionEquality unionIsType intEquality sqequalBase baseApply inlFormation_alt

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  (Orthogonal(f)  \mLeftarrow{}{}\mRightarrow{}  f  0  \mequiv{}  0  \mwedge{}  Isometry(f))



Date html generated: 2020_05_20-PM-01_12_35
Last ObjectModification: 2020_01_08-AM-11_05_25

Theory : inner!product!spaces


Home Index