Nuprl Lemma : rtermMultiply_wf
∀[left,right:rat_term()].  (left "*" right ∈ rat_term())
Proof
Definitions occuring in Statement : 
rtermMultiply: left "*" right
, 
rat_term: rat_term()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat_term: rat_term()
, 
rtermMultiply: left "*" right
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
rat_termco_size: rat_termco_size(p)
, 
rat_term_size: rat_term_size(p)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rat_termco-ext, 
ifthenelse_wf, 
eq_atom_wf, 
rat_termco_wf, 
add_nat_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
rat_term_size_wf, 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
istype-universe, 
has-value_wf-partial, 
rat_termco_size_wf, 
rat_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
dependent_pairEquality_alt, 
tokenEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
instantiate, 
isectElimination, 
universeEquality, 
intEquality, 
productEquality, 
voidEquality, 
applyEquality, 
productElimination, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[left,right:rat\_term()].    (left  "*"  right  \mmember{}  rat\_term())
Date html generated:
2019_10_29-AM-09_26_34
Last ObjectModification:
2019_03_31-PM-05_24_18
Theory : reals
Home
Index