Nuprl Lemma : rat_termco_size_wf

[p:rat_termco()]. (rat_termco_size(p) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  rat_termco_size: rat_termco_size(p) rat_termco: rat_termco() partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) rat_termco: rat_termco() eq_atom: =a y decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: nequal: a ≠ b ∈  pi1: fst(t) pi2: snd(t) rat_termco_size: rat_termco_size(p)
Lemmas referenced :  fix_wf_corec-partial1 nat_wf set-value-type le_wf istype-int int-value-type nat-mono ifthenelse_wf eq_atom_wf istype-universe subtype_rel_product istype-atom subtype_rel_ifthenelse istype-void subtype_rel_wf strong-continuous-depproduct eqtt_to_assert assert_of_eq_atom continuous-constant eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom strong-continuous-product continuous-id bool_wf subtype_rel_weakening istype-nat atom_subtype_base decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le inclusion-partial add-wf-partial-nat partial_wf rat_termco_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality_alt natural_numberEquality hypothesisEquality productEquality atomEquality instantiate tokenEquality universeEquality voidEquality independent_pairFormation because_Cache lambdaFormation_alt voidElimination universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination independent_functionElimination cumulativity isectEquality applyEquality functionIsType dependent_set_memberEquality_alt approximateComputation productIsType

Latex:
\mforall{}[p:rat\_termco()].  (rat\_termco\_size(p)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_10_29-AM-09_25_06
Last ObjectModification: 2019_03_31-PM-05_25_12

Theory : reals


Home Index