Nuprl Lemma : subtype_rel_ifthenelse

[b:𝔹]. ∀[A1,A2,B1,B2:Type].
  (if then A1 else B1 fi  ⊆if then A2 else B2 fi supposing ((A1 ⊆A2) and (B1 ⊆B2))


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff prop: subtype_rel: A ⊆B
Lemmas referenced :  bool_wf equal_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination sqequalRule isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality cumulativity isect_memberEquality because_Cache

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[A1,A2,B1,B2:Type].
    (if  b  then  A1  else  B1  fi    \msubseteq{}r  if  b  then  A2  else  B2  fi  )  supposing  ((A1  \msubseteq{}r  A2)  and  (B1  \msubseteq{}r  B2))



Date html generated: 2018_05_21-PM-00_00_52
Last ObjectModification: 2017_10_10-PM-04_20_10

Theory : union


Home Index