Nuprl Lemma : subtype_rel_ifthenelse
∀[b:𝔹]. ∀[A1,A2,B1,B2:Type].
  (if b then A1 else B1 fi  ⊆r if b then A2 else B2 fi ) supposing ((A1 ⊆r A2) and (B1 ⊆r B2))
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
bool_wf, 
equal_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
sqequalRule, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[A1,A2,B1,B2:Type].
    (if  b  then  A1  else  B1  fi    \msubseteq{}r  if  b  then  A2  else  B2  fi  )  supposing  ((A1  \msubseteq{}r  A2)  and  (B1  \msubseteq{}r  B2))
Date html generated:
2018_05_21-PM-00_00_52
Last ObjectModification:
2017_10_10-PM-04_20_10
Theory : union
Home
Index