Nuprl Lemma : rat_termco-ext

rat_termco() ≡ lbl:Atom × if lbl =a "Constant" then ℤ
                          if lbl =a "Var" then ℤ
                          if lbl =a "Add" then left:rat_termco() × rat_termco()
                          if lbl =a "Subtract" then left:rat_termco() × rat_termco()
                          if lbl =a "Multiply" then left:rat_termco() × rat_termco()
                          if lbl =a "Divide" then num:rat_termco() × rat_termco()
                          if lbl =a "Minus" then rat_termco()
                          else Void
                          fi 


Proof




Definitions occuring in Statement :  rat_termco: rat_termco() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] int: token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  rat_termco: rat_termco() uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T])
Lemmas referenced :  corec-ext ifthenelse_wf eq_atom_wf istype-universe subtype_rel_product istype-atom subtype_rel_ifthenelse istype-void istype-int subtype_rel_wf strong-continuous-depproduct eqtt_to_assert assert_of_eq_atom continuous-constant eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom strong-continuous-product continuous-id bool_wf subtype_rel_weakening nat_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt productEquality atomEquality instantiate hypothesisEquality tokenEquality hypothesis universeEquality intEquality voidEquality independent_isectElimination independent_pairFormation isect_memberFormation_alt because_Cache lambdaFormation_alt voidElimination universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination independent_functionElimination cumulativity isectEquality applyEquality functionIsType

Latex:
rat\_termco()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "Constant"  then  \mBbbZ{}
                                                    if  lbl  =a  "Var"  then  \mBbbZ{}
                                                    if  lbl  =a  "Add"  then  left:rat\_termco()  \mtimes{}  rat\_termco()
                                                    if  lbl  =a  "Subtract"  then  left:rat\_termco()  \mtimes{}  rat\_termco()
                                                    if  lbl  =a  "Multiply"  then  left:rat\_termco()  \mtimes{}  rat\_termco()
                                                    if  lbl  =a  "Divide"  then  num:rat\_termco()  \mtimes{}  rat\_termco()
                                                    if  lbl  =a  "Minus"  then  rat\_termco()
                                                    else  Void
                                                    fi 



Date html generated: 2019_10_29-AM-09_24_54
Last ObjectModification: 2019_03_31-PM-05_15_44

Theory : reals


Home Index