Nuprl Lemma : rv-sub0

[rv:RealVectorSpace]. ∀[x:Point].  0 ≡ x


Proof




Definitions occuring in Statement :  rv-sub: y rv-0: 0 real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: rv-sub: y rv-minus: -x all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 rv-sub_wf rv-0_wf ss-point_wf real-vector-space_wf ss-eq_wf rv-add_wf rv-mul_wf int-to-real_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul-0 rv-0-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis isect_memberEquality voidElimination minusEquality natural_numberEquality independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    x  -  0  \mequiv{}  x



Date html generated: 2017_10_04-PM-11_51_12
Last ObjectModification: 2017_06_23-PM-04_36_21

Theory : inner!product!spaces


Home Index