Nuprl Lemma : rv-orthogonal-iff-norm-preserving

[rv:InnerProductSpace]
  ∀f:Point ⟶ Point
    (Orthogonal(f) ⇐⇒ (∀x,y:Point.  y ≡ y) ∧ (∀x:Point. ((∀a:ℝa*x ≡ a*f x) ∧ (||f x|| ||x||))))


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) rv-norm: ||x|| inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y ss-eq: x ≡ y ss-point: Point req: y real: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  true: True squash: T less_than: a < b or: P ∨ Q rneq: x ≠ y rsub: y rv-minus: -x rv-sub: y less_than': less_than'(a;b) le: A ≤ B nat: cand: c∧ B rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rv-norm: ||x|| rv-orthogonal: Orthogonal(f) false: False not: ¬A ss-eq: x ≡ y so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rmul_comm rless_wf rless-int rmul_preserves_req radd-zero-both rmul-zero-both radd-int rmul_functionality rminus-as-rmul rmul-distrib2 rmul-identity1 radd-rminus-assoc radd_comm radd-ac radd-assoc rminus-radd rminus_wf radd-preserves-req rsub_functionality radd_functionality rv-ip-sub-squared rsub_wf radd_wf rv-sub_wf ss-eq_inversion ss-eq_weakening rv-add_functionality rv-ip_functionality uiff_transitivity rnexp_functionality req_transitivity rv-norm-squared le_wf false_wf rnexp_wf req_inversion rsqrt_functionality req_functionality req_weakening rv-ip-nonneg rsqrt_wf req_witness ss-sep_wf rv-ip_wf rmul_wf int-to-real_wf rleq_wf rv-norm_wf req_wf rv-mul_wf rv-add_wf ss-eq_wf all_wf rv-orthogonal_wf real_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf
Rules used in proof :  baseClosed imageMemberEquality inrFormation addEquality promote_hyp allFunctionality minusEquality dependent_set_memberEquality independent_functionElimination voidElimination independent_pairEquality functionEquality natural_numberEquality setEquality rename setElimination lambdaEquality productEquality productElimination functionExtensionality dependent_functionElimination because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid independent_pairFormation lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace]
    \mforall{}f:Point  {}\mrightarrow{}  Point
        (Orthogonal(f)
        \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y:Point.    f  x  +  y  \mequiv{}  f  x  +  f  y)
                \mwedge{}  (\mforall{}x:Point.  ((\mforall{}a:\mBbbR{}.  f  a*x  \mequiv{}  a*f  x)  \mwedge{}  (||f  x||  =  ||x||))))



Date html generated: 2016_11_08-AM-09_18_07
Last ObjectModification: 2016_11_01-AM-00_25_56

Theory : inner!product!spaces


Home Index