Nuprl Lemma : rv-orthogonal_wf
∀[rv:InnerProductSpace]. ∀f:Point ⟶ Point. (Orthogonal(f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
rv-orthogonal: Orthogonal(f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-mul_wf, 
real_wf, 
rv-ip_wf, 
req_wf, 
rv-add_wf, 
ss-eq_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
all_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
functionEquality, 
functionExtensionality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point  {}\mrightarrow{}  Point.  (Orthogonal(f)  \mmember{}  \mBbbP{})
Date html generated:
2016_11_08-AM-09_17_42
Last ObjectModification:
2016_10_31-PM-11_41_41
Theory : inner!product!spaces
Home
Index