Nuprl Lemma : rv-orthogonal-isometry
∀[rv:InnerProductSpace]. ∀[f:Point ⟶ Point].  Isometry(f) supposing Orthogonal(f)
Proof
Definitions occuring in Statement : 
rv-isometry: Isometry(f)
, 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rv-minus: -x
, 
rv-sub: x - y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rv-isometry: Isometry(f)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-add_functionality, 
ss-eq_transitivity, 
ss-eq_functionality, 
ss-eq_weakening, 
rv-mul_wf, 
rv-add_wf, 
req_weakening, 
rv-norm_functionality, 
req_functionality, 
rv-orthogonal_wf, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
rv-ip_wf, 
req_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
rv-sub_wf, 
rv-norm_wf, 
ss-point_wf, 
req_witness, 
rv-orthogonal-iff-norm-preserving
Rules used in proof : 
minusEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
natural_numberEquality, 
productEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
functionExtensionality, 
isect_memberEquality, 
sqequalRule, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f:Point  {}\mrightarrow{}  Point].    Isometry(f)  supposing  Orthogonal(f)
Date html generated:
2016_11_08-AM-09_18_21
Last ObjectModification:
2016_11_02-PM-08_44_49
Theory : inner!product!spaces
Home
Index