Nuprl Lemma : rv-orthogonal-isometry

[rv:InnerProductSpace]. ∀[f:Point ⟶ Point].  Isometry(f) supposing Orthogonal(f)


Proof




Definitions occuring in Statement :  rv-isometry: Isometry(f) rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-point: Point uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  rv-minus: -x rv-sub: y rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) prop: guard: {T} subtype_rel: A ⊆B implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] rv-isometry: Isometry(f) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-add_functionality ss-eq_transitivity ss-eq_functionality ss-eq_weakening rv-mul_wf rv-add_wf req_weakening rv-norm_functionality req_functionality rv-orthogonal_wf rmul_wf int-to-real_wf rleq_wf real_wf rv-ip_wf req_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 inner-product-space_subtype rv-sub_wf rv-norm_wf ss-point_wf req_witness rv-orthogonal-iff-norm-preserving
Rules used in proof :  minusEquality functionEquality equalitySymmetry equalityTransitivity natural_numberEquality productEquality setEquality rename setElimination lambdaEquality independent_isectElimination instantiate functionExtensionality isect_memberEquality sqequalRule applyEquality because_Cache independent_functionElimination productElimination dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f:Point  {}\mrightarrow{}  Point].    Isometry(f)  supposing  Orthogonal(f)



Date html generated: 2016_11_08-AM-09_18_21
Last ObjectModification: 2016_11_02-PM-08_44_49

Theory : inner!product!spaces


Home Index