Nuprl Lemma : rv-minus_functionality
∀[rv:RealVectorSpace]. ∀[x,x':Point].  -x ≡ -x' supposing x ≡ x'
Proof
Definitions occuring in Statement : 
rv-minus: -x
, 
real-vector-space: RealVectorSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rv-minus: -x
Lemmas referenced : 
real-vector-space_wf, 
ss-point_wf, 
ss-eq_wf, 
rv-mul_wf, 
real-vector-space_subtype1, 
ss-sep_wf, 
req_weakening, 
int-to-real_wf, 
rv-mul_functionality
Rules used in proof : 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
minusEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,x':Point].    -x  \mequiv{}  -x'  supposing  x  \mequiv{}  x'
Date html generated:
2016_11_08-AM-09_14_11
Last ObjectModification:
2016_10_31-PM-02_14_47
Theory : inner!product!spaces
Home
Index