Nuprl Lemma : rv-minus_functionality

[rv:RealVectorSpace]. ∀[x,x':Point].  -x ≡ -x' supposing x ≡ x'


Proof




Definitions occuring in Statement :  rv-minus: -x real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  prop: subtype_rel: A ⊆B false: False implies:  Q not: ¬A ss-eq: x ≡ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] rv-minus: -x
Lemmas referenced :  real-vector-space_wf ss-point_wf ss-eq_wf rv-mul_wf real-vector-space_subtype1 ss-sep_wf req_weakening int-to-real_wf rv-mul_functionality
Rules used in proof :  voidElimination equalitySymmetry equalityTransitivity isect_memberEquality applyEquality dependent_functionElimination lambdaEquality independent_isectElimination because_Cache hypothesis natural_numberEquality minusEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,x':Point].    -x  \mequiv{}  -x'  supposing  x  \mequiv{}  x'



Date html generated: 2016_11_08-AM-09_14_11
Last ObjectModification: 2016_10_31-PM-02_14_47

Theory : inner!product!spaces


Home Index