Nuprl Lemma : rv-midpoint-unique

rv:InnerProductSpace. ∀a,b,m:Point(rv).
  ((||m a|| (||b a||/r(2))) ∧ (||m b|| (||b a||/r(2))) ⇐⇒ m ≡ (r1/r(2))*a b)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y rdiv: (x/y) req: y int-to-real: r(n) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top nat: le: A ≤ B exp: i^n primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) subtract: m rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) int_nzero: -o nequal: a ≠ b ∈  rdiv: (x/y) rv-sub: y rv-minus: -x rat_term_to_real: rat_term_to_real(f;t) rtermMinus: rtermMinus(num) rat_term_ind: rat_term_ind rtermDivide: num "/" denom rtermConstant: "const" pi1: fst(t) rtermAdd: left "+" right pi2: snd(t)
Lemmas referenced :  req_wf rv-norm_wf rv-sub_wf rdiv_wf inner-product-space_subtype int-to-real_wf rless-int rless_wf Error :ss-eq_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-mul_wf rv-add_wf Error :ss-point_wf,  rv-norm-difference-symmetry req_functionality req_weakening rv-ip-zero-iff radd_wf rv-ip_wf rmul_wf rsub_wf radd_functionality rv-ip-sub-squared rv-ip-add-squared itermSubtract_wf itermAdd_wf itermVar_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma rnexp_wf istype-le req_inversion rv-norm-squared rnexp_functionality exp_wf2 req-int rnexp-int rless_transitivity1 rleq_weakening rnexp-rdiv rdiv_functionality rmul_preserves_req rinv_wf2 subtype_base_sq int_subtype_base nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf nequal_wf req_transitivity int-rinv-cancel squash_wf true_wf subtype_rel_self iff_weakening_equal rv-minus_wf rv-add-cancel-left rv-0_wf Error :ss-eq_functionality,  rv-add-comm Error :ss-eq_weakening,  Error :ss-eq_inversion,  rv-add-assoc uiff_transitivity Error :ss-eq_transitivity,  rv-add_functionality rv-add-minus rv-add-0 rv-ip_functionality radd-preserves-req rminus_wf itermMinus_wf real_term_value_minus_lemma rv-mul-linear rv-mul-mul rv-add-swap rv-mul-1-add-alt rv-mul_functionality rmul-int rv-sub-is-zero rmul-rinv rv-mul1 rabs_wf rleq-int-fractions2 decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than istype-false rv-norm_functionality rv-sub_functionality rv-norm-mul rmul_functionality rabs-of-nonneg rmul-rinv3 assert-rat-term-eq2 rtermAdd_wf rtermConstant_wf rtermDivide_wf rtermMinus_wf rv-mul-add rinv-as-rdiv rminus_functionality rv-norm-sub rv-mul-add-alt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule productIsType universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache hypothesis closedConclusion natural_numberEquality independent_isectElimination inrFormation_alt dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed instantiate inhabitedIsType lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry equalityIstype approximateComputation int_eqEquality isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt cumulativity intEquality unionElimination dependent_pairFormation_alt Error :memTop,  sqequalBase imageElimination universeEquality minusEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,m:Point(rv).
    ((||m  -  a||  =  (||b  -  a||/r(2)))  \mwedge{}  (||m  -  b||  =  (||b  -  a||/r(2)))  \mLeftarrow{}{}\mRightarrow{}  m  \mequiv{}  (r1/r(2))*a  +  b)



Date html generated: 2020_05_20-PM-01_12_12
Last ObjectModification: 2019_12_09-PM-11_53_15

Theory : inner!product!spaces


Home Index