Nuprl Lemma : rv-midpoint-unique
∀rv:InnerProductSpace. ∀a,b,m:Point(rv).
  ((||m - a|| = (||b - a||/r(2))) ∧ (||m - b|| = (||b - a||/r(2))) 
⇐⇒ m ≡ (r1/r(2))*a + b)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
rdiv: (x/y)
, 
req: x = y
, 
int-to-real: r(n)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
primtailrec: primtailrec(n;i;b;f)
, 
subtract: n - m
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rdiv: (x/y)
, 
rv-sub: x - y
, 
rv-minus: -x
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermMinus: rtermMinus(num)
, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom
, 
rtermConstant: "const"
, 
pi1: fst(t)
, 
rtermAdd: left "+" right
, 
pi2: snd(t)
Lemmas referenced : 
req_wf, 
rv-norm_wf, 
rv-sub_wf, 
rdiv_wf, 
inner-product-space_subtype, 
int-to-real_wf, 
rless-int, 
rless_wf, 
Error :ss-eq_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-mul_wf, 
rv-add_wf, 
Error :ss-point_wf, 
rv-norm-difference-symmetry, 
req_functionality, 
req_weakening, 
rv-ip-zero-iff, 
radd_wf, 
rv-ip_wf, 
rmul_wf, 
rsub_wf, 
radd_functionality, 
rv-ip-sub-squared, 
rv-ip-add-squared, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
rnexp_wf, 
istype-le, 
req_inversion, 
rv-norm-squared, 
rnexp_functionality, 
exp_wf2, 
req-int, 
rnexp-int, 
rless_transitivity1, 
rleq_weakening, 
rnexp-rdiv, 
rdiv_functionality, 
rmul_preserves_req, 
rinv_wf2, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
nequal_wf, 
req_transitivity, 
int-rinv-cancel, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rv-minus_wf, 
rv-add-cancel-left, 
rv-0_wf, 
Error :ss-eq_functionality, 
rv-add-comm, 
Error :ss-eq_weakening, 
Error :ss-eq_inversion, 
rv-add-assoc, 
uiff_transitivity, 
Error :ss-eq_transitivity, 
rv-add_functionality, 
rv-add-minus, 
rv-add-0, 
rv-ip_functionality, 
radd-preserves-req, 
rminus_wf, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rv-mul-linear, 
rv-mul-mul, 
rv-add-swap, 
rv-mul-1-add-alt, 
rv-mul_functionality, 
rmul-int, 
rv-sub-is-zero, 
rmul-rinv, 
rv-mul1, 
rabs_wf, 
rleq-int-fractions2, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
istype-false, 
rv-norm_functionality, 
rv-sub_functionality, 
rv-norm-mul, 
rmul_functionality, 
rabs-of-nonneg, 
rmul-rinv3, 
assert-rat-term-eq2, 
rtermAdd_wf, 
rtermConstant_wf, 
rtermDivide_wf, 
rtermMinus_wf, 
rv-mul-add, 
rinv-as-rdiv, 
rminus_functionality, 
rv-norm-sub, 
rv-mul-add-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
inhabitedIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
cumulativity, 
intEquality, 
unionElimination, 
dependent_pairFormation_alt, 
Error :memTop, 
sqequalBase, 
imageElimination, 
universeEquality, 
minusEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,m:Point(rv).
    ((||m  -  a||  =  (||b  -  a||/r(2)))  \mwedge{}  (||m  -  b||  =  (||b  -  a||/r(2)))  \mLeftarrow{}{}\mRightarrow{}  m  \mequiv{}  (r1/r(2))*a  +  b)
Date html generated:
2020_05_20-PM-01_12_12
Last ObjectModification:
2019_12_09-PM-11_53_15
Theory : inner!product!spaces
Home
Index