Nuprl Lemma : rv-norm-sub

[rv:InnerProductSpace]. ∀[x,y:Point(rv)].  (||x y|| ||y x||)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace req: y uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q guard: {T} uimplies: supposing a
Lemmas referenced :  rv-norm-difference-symmetry req_witness rv-norm_wf rv-sub_wf inner-product-space_subtype Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry because_Cache independent_functionElimination isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate independent_isectElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point(rv)].    (||x  -  y||  =  ||y  -  x||)



Date html generated: 2020_05_20-PM-01_11_33
Last ObjectModification: 2019_12_09-PM-11_48_25

Theory : inner!product!spaces


Home Index