Nuprl Lemma : rnexp-rdiv

[y,x:ℝ].  ∀[n:ℕ]. ((y^n/x^n) (y/x)^n) supposing x ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rnexp: x^k1 req: y int-to-real: r(n) real: nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rdiv_wf rpower-nonzero rnexp_wf nat_wf rneq_wf int-to-real_wf real_wf inverse-rpower rinv_wf2 req_functionality req_inversion rinv-as-rdiv rnexp_functionality rmul_wf rmul_functionality req_weakening rnexp-rmul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis sqequalRule isect_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry productElimination

Latex:
\mforall{}[y,x:\mBbbR{}].    \mforall{}[n:\mBbbN{}].  ((y\^{}n/x\^{}n)  =  (y/x)\^{}n)  supposing  x  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_37_19
Last ObjectModification: 2017_07_28-AM-07_30_02

Theory : reals


Home Index