Nuprl Lemma : rnexp-rdiv
∀[y,x:ℝ].  ∀[n:ℕ]. ((y^n/x^n) = (y/x)^n) supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
rnexp: x^k1, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rdiv: (x/y), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rdiv_wf, 
rpower-nonzero, 
rnexp_wf, 
nat_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
inverse-rpower, 
rinv_wf2, 
req_functionality, 
req_inversion, 
rinv-as-rdiv, 
rnexp_functionality, 
rmul_wf, 
rmul_functionality, 
req_weakening, 
rnexp-rmul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination
Latex:
\mforall{}[y,x:\mBbbR{}].    \mforall{}[n:\mBbbN{}].  ((y\^{}n/x\^{}n)  =  (y/x)\^{}n)  supposing  x  \mneq{}  r0
Date html generated:
2017_10_03-AM-08_37_19
Last ObjectModification:
2017_07_28-AM-07_30_02
Theory : reals
Home
Index