Nuprl Lemma : rpower-nonzero

x:ℝ(x ≠ r0  (∀n:ℕx^n ≠ r0))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rnexp: x^k1 int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T top: Top rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: uall: [x:A]. B[x] nat: decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  rnexp_zero_lemma rless-int rless_wf int-to-real_wf rneq_wf rnexp_wf decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 nat_wf real_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rmul_wf intformeq_wf int_formula_prop_eq_lemma rmul-neq-zero rneq_functionality rnexp-req req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis inrFormation because_Cache productElimination independent_functionElimination independent_pairFormation natural_numberEquality imageMemberEquality hypothesisEquality baseClosed isectElimination rename setElimination dependent_set_memberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  x\^{}n  \mneq{}  r0))



Date html generated: 2017_10_03-AM-08_33_38
Last ObjectModification: 2017_07_28-AM-07_28_27

Theory : reals


Home Index