Nuprl Lemma : inverse-rpower
∀[x:ℝ]. ∀[n:ℕ]. ((r1/x^n) = (r1/x)^n) supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
rnexp: x^k1, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermConstant: "const", 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
true: True, 
rtermDivide: num "/" denom, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
pi2: snd(t), 
decidable: Dec(P), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
rev_uimplies: rev_uimplies(P;Q), 
rtermMultiply: left "*" right, 
rtermVar: rtermVar(var)
Lemmas referenced : 
rpower-nonzero, 
req_witness, 
rdiv_wf, 
int-to-real_wf, 
rnexp_wf, 
istype-nat, 
rneq_wf, 
real_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
rnexp_zero_lemma, 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermConstant_wf, 
rless-int, 
rless_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract-1-ge-0, 
ifthenelse_wf, 
eq_int_wf, 
rmul_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rneq_functionality, 
rnexp-req, 
req_weakening, 
req_functionality, 
rdiv_functionality, 
rtermMultiply_wf, 
rtermVar_wf, 
rmul_functionality, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
inhabitedIsType, 
isectElimination, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
universeIsType, 
setElimination, 
rename, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
inrFormation_alt, 
productElimination, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[n:\mBbbN{}].  ((r1/x\^{}n)  =  (r1/x)\^{}n)  supposing  x  \mneq{}  r0
Date html generated:
2019_10_29-AM-09_58_04
Last ObjectModification:
2019_04_01-PM-11_19_47
Theory : reals
Home
Index