Nuprl Lemma : inverse-rpower

[x:ℝ]. ∀[n:ℕ]. ((r1/x^n) (r1/x)^n) supposing x ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rnexp: x^k1 req: y int-to-real: r(n) real: nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q rat_term_to_real: rat_term_to_real(f;t) rtermConstant: "const" rat_term_ind: rat_term_ind pi1: fst(t) true: True rtermDivide: num "/" denom rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) pi2: snd(t) decidable: Dec(P) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) rtermMultiply: left "*" right rtermVar: rtermVar(var)
Lemmas referenced :  rpower-nonzero req_witness rdiv_wf int-to-real_wf rnexp_wf istype-nat rneq_wf real_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than rnexp_zero_lemma assert-rat-term-eq2 rtermDivide_wf rtermConstant_wf rless-int rless_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 ifthenelse_wf eq_int_wf rmul_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int rneq_functionality rnexp-req req_weakening req_functionality rdiv_functionality rtermMultiply_wf rtermVar_wf rmul_functionality req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis inhabitedIsType isectElimination closedConclusion natural_numberEquality independent_isectElimination sqequalRule isect_memberEquality_alt because_Cache isectIsTypeImplies universeIsType setElimination rename intWeakElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination independent_pairFormation functionIsTypeImplies inrFormation_alt productElimination imageMemberEquality baseClosed dependent_set_memberEquality_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[n:\mBbbN{}].  ((r1/x\^{}n)  =  (r1/x)\^{}n)  supposing  x  \mneq{}  r0



Date html generated: 2019_10_29-AM-09_58_04
Last ObjectModification: 2019_04_01-PM-11_19_47

Theory : reals


Home Index