Nuprl Lemma : assert-rat-term-eq2
∀[r1,r2:rat_term()]. ∀[f:ℤ ⟶ ℝ].
  ((snd(rat_term_to_real(f;r1))) = (snd(rat_term_to_real(f;r2)))) supposing 
     ((fst(rat_term_to_real(f;r1))) and 
     (fst(rat_term_to_real(f;r2))) and 
     (inl Ax ≤ rat-term-eq(r1;r2)))
Proof
Definitions occuring in Statement : 
rat-term-eq: rat-term-eq(r1;r2)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rat_term: rat_term()
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
int: ℤ
, 
sqle: s ≤ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
it: ⋅
, 
btrue: tt
, 
mono: mono(T)
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
true: True
Lemmas referenced : 
sq_stable__req, 
uimplies_subtype, 
real_wf, 
assert-rat-term-eq, 
rat_term_to_real_wf, 
istype-sqle, 
rat-term-eq_wf, 
bool_subtype_base, 
istype-int, 
rat_term_wf, 
bool-mono, 
btrue_wf, 
bool_wf, 
subtype_base_sq, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
inhabitedIsType, 
hypothesis, 
lambdaFormation_alt, 
productElimination, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
setElimination, 
rename, 
lambdaEquality_alt, 
universeIsType, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionIsType, 
dependent_pairFormation_alt, 
sqequalBase, 
instantiate, 
cumulativity, 
natural_numberEquality
Latex:
\mforall{}[r1,r2:rat\_term()].  \mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}].
    ((snd(rat\_term\_to\_real(f;r1)))  =  (snd(rat\_term\_to\_real(f;r2))))  supposing 
          ((fst(rat\_term\_to\_real(f;r1)))  and 
          (fst(rat\_term\_to\_real(f;r2)))  and 
          (inl  Ax  \mleq{}  rat-term-eq(r1;r2)))
Date html generated:
2019_10_29-AM-09_54_19
Last ObjectModification:
2019_04_01-PM-07_02_46
Theory : reals
Home
Index