Nuprl Lemma : rat_term_to_real_wf
∀[t:rat_term()]. ∀[f:ℤ ⟶ ℝ].  (rat_term_to_real(f;t) ∈ P:ℙ × ℝ supposing P)
Proof
Definitions occuring in Statement : 
rat_term_to_real: rat_term_to_real(f;t)
, 
rat_term: rat_term()
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
rat_term_ind_wf_simple, 
real_wf, 
true_wf, 
int-to-real_wf, 
istype-true, 
radd_wf, 
uimplies_subtype, 
rsub_wf, 
rmul_wf, 
rneq_wf, 
rdiv_wf, 
rminus_wf, 
istype-int, 
rat_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
closedConclusion, 
productEquality, 
universeEquality, 
isectEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
dependent_pairEquality_alt, 
isect_memberEquality_alt, 
isectIsType, 
universeIsType, 
because_Cache, 
applyEquality, 
productElimination, 
independent_isectElimination, 
productIsType, 
inhabitedIsType, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
isectIsTypeImplies
Latex:
\mforall{}[t:rat\_term()].  \mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}].    (rat\_term\_to\_real(f;t)  \mmember{}  P:\mBbbP{}  \mtimes{}  \mBbbR{}  supposing  P)
Date html generated:
2019_10_29-AM-09_40_32
Last ObjectModification:
2019_04_01-AM-00_13_39
Theory : reals
Home
Index