Nuprl Lemma : rat_term_to_real_wf

[t:rat_term()]. ∀[f:ℤ ⟶ ℝ].  (rat_term_to_real(f;t) ∈ P:ℙ × ℝ supposing P)


Proof




Definitions occuring in Statement :  rat_term_to_real: rat_term_to_real(f;t) rat_term: rat_term() real: uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat_term_to_real: rat_term_to_real(f;t) prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) and: P ∧ Q subtype_rel: A ⊆B cand: c∧ B so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  rat_term_ind_wf_simple real_wf true_wf int-to-real_wf istype-true radd_wf uimplies_subtype rsub_wf rmul_wf rneq_wf rdiv_wf rminus_wf istype-int rat_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination closedConclusion productEquality universeEquality isectEquality cumulativity hypothesisEquality hypothesis lambdaEquality_alt dependent_pairEquality_alt isect_memberEquality_alt isectIsType universeIsType because_Cache applyEquality productElimination independent_isectElimination productIsType inhabitedIsType natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType isectIsTypeImplies

Latex:
\mforall{}[t:rat\_term()].  \mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}].    (rat\_term\_to\_real(f;t)  \mmember{}  P:\mBbbP{}  \mtimes{}  \mBbbR{}  supposing  P)



Date html generated: 2019_10_29-AM-09_40_32
Last ObjectModification: 2019_04_01-AM-00_13_39

Theory : reals


Home Index