Nuprl Lemma : rat_term_ind_wf_simple

[A:Type]. ∀[v:rat_term()]. ∀[Constant,Var:var:ℤ ⟶ A]. ∀[Add,Subtract,Multiply,Divide:num:rat_term()
                                                                                       ⟶ denom:rat_term()
                                                                                       ⟶ A
                                                                                       ⟶ A
                                                                                       ⟶ A]. ∀[Minus:num:rat_term()
                                                                                                      ⟶ A
                                                                                                      ⟶ A].
  (rat_term_ind(v;
                rtermConstant(const) Constant[const];
                rtermVar(var) Var[var];
                rtermAdd(left,right) rec1,rec2.Add[left;right;rec1;rec2];
                rtermSubtract(left,right) rec3,rec4.Subtract[left;right;rec3;rec4];
                rtermMultiply(left,right) rec5,rec6.Multiply[left;right;rec5;rec6];
                rtermDivide(num,denom) rec7,rec8.Divide[num;denom;rec7;rec8];
                rtermMinus(num) rec9.Minus[num;rec9])  ∈ A)


Proof




Definitions occuring in Statement :  rat_term_ind: rat_term_ind rat_term: rat_term() uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  rat_term_ind_wf true_wf rat_term_wf istype-true subtype_rel_dep_function istype-int istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt universeIsType functionExtensionality applyEquality dependent_set_memberEquality_alt natural_numberEquality inhabitedIsType equalityTransitivity equalitySymmetry closedConclusion intEquality functionEquality because_Cache setEquality independent_isectElimination lambdaFormation_alt setIsType setElimination rename applyLambdaEquality functionIsType instantiate universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[v:rat\_term()].  \mforall{}[Constant,Var:var:\mBbbZ{}  {}\mrightarrow{}  A].
\mforall{}[Add,Subtract,Multiply,Divide:num:rat\_term()  {}\mrightarrow{}  denom:rat\_term()  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
\mforall{}[Minus:num:rat\_term()  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (rat\_term\_ind(v;
                                rtermConstant(const){}\mRightarrow{}  Constant[const];
                                rtermVar(var){}\mRightarrow{}  Var[var];
                                rtermAdd(left,right){}\mRightarrow{}  rec1,rec2.Add[left;right;rec1;rec2];
                                rtermSubtract(left,right){}\mRightarrow{}  rec3,rec4.Subtract[left;right;rec3;rec4];
                                rtermMultiply(left,right){}\mRightarrow{}  rec5,rec6.Multiply[left;right;rec5;rec6];
                                rtermDivide(num,denom){}\mRightarrow{}  rec7,rec8.Divide[num;denom;rec7;rec8];
                                rtermMinus(num){}\mRightarrow{}  rec9.Minus[num;rec9])    \mmember{}  A)



Date html generated: 2019_10_29-AM-09_31_12
Last ObjectModification: 2019_03_31-PM-05_25_40

Theory : reals


Home Index