Nuprl Lemma : rat_term_ind_wf_simple
∀[A:Type]. ∀[v:rat_term()]. ∀[Constant,Var:var:ℤ ⟶ A]. ∀[Add,Subtract,Multiply,Divide:num:rat_term()
                                                                                       ⟶ denom:rat_term()
                                                                                       ⟶ A
                                                                                       ⟶ A
                                                                                       ⟶ A]. ∀[Minus:num:rat_term()
                                                                                                      ⟶ A
                                                                                                      ⟶ A].
  (rat_term_ind(v;
                rtermConstant(const)
⇒ Constant[const];
                rtermVar(var)
⇒ Var[var];
                rtermAdd(left,right)
⇒ rec1,rec2.Add[left;right;rec1;rec2];
                rtermSubtract(left,right)
⇒ rec3,rec4.Subtract[left;right;rec3;rec4];
                rtermMultiply(left,right)
⇒ rec5,rec6.Multiply[left;right;rec5;rec6];
                rtermDivide(num,denom)
⇒ rec7,rec8.Divide[num;denom;rec7;rec8];
                rtermMinus(num)
⇒ rec9.Minus[num;rec9])  ∈ A)
Proof
Definitions occuring in Statement : 
rat_term_ind: rat_term_ind, 
rat_term: rat_term()
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rat_term_ind_wf, 
true_wf, 
rat_term_wf, 
istype-true, 
subtype_rel_dep_function, 
istype-int, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
functionExtensionality, 
applyEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
intEquality, 
functionEquality, 
because_Cache, 
setEquality, 
independent_isectElimination, 
lambdaFormation_alt, 
setIsType, 
setElimination, 
rename, 
applyLambdaEquality, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[v:rat\_term()].  \mforall{}[Constant,Var:var:\mBbbZ{}  {}\mrightarrow{}  A].
\mforall{}[Add,Subtract,Multiply,Divide:num:rat\_term()  {}\mrightarrow{}  denom:rat\_term()  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
\mforall{}[Minus:num:rat\_term()  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (rat\_term\_ind(v;
                                rtermConstant(const){}\mRightarrow{}  Constant[const];
                                rtermVar(var){}\mRightarrow{}  Var[var];
                                rtermAdd(left,right){}\mRightarrow{}  rec1,rec2.Add[left;right;rec1;rec2];
                                rtermSubtract(left,right){}\mRightarrow{}  rec3,rec4.Subtract[left;right;rec3;rec4];
                                rtermMultiply(left,right){}\mRightarrow{}  rec5,rec6.Multiply[left;right;rec5;rec6];
                                rtermDivide(num,denom){}\mRightarrow{}  rec7,rec8.Divide[num;denom;rec7;rec8];
                                rtermMinus(num){}\mRightarrow{}  rec9.Minus[num;rec9])    \mmember{}  A)
Date html generated:
2019_10_29-AM-09_31_12
Last ObjectModification:
2019_03_31-PM-05_25_40
Theory : reals
Home
Index