Nuprl Lemma : rat_term_ind_wf

[A:Type]. ∀[R:A ⟶ rat_term() ⟶ ℙ]. ∀[v:rat_term()]. ∀[Constant:const:ℤ ⟶ {x:A| R[x;"const"]} ].
[Var:var:ℤ ⟶ {x:A| R[x;rtermVar(var)]} ]. ∀[Add:left:rat_term()
                                                 ⟶ right:rat_term()
                                                 ⟶ {x:A| R[x;left]} 
                                                 ⟶ {x:A| R[x;right]} 
                                                 ⟶ {x:A| R[x;left "+" right]} ]. ∀[Subtract:left:rat_term()
                                                                                            ⟶ right:rat_term()
                                                                                            ⟶ {x:A| R[x;left]} 
                                                                                            ⟶ {x:A| R[x;right]} 
                                                                                            ⟶ {x:A| 
                                                                                                R[x;left "-" right]} ].
[Multiply:left:rat_term() ⟶ right:rat_term() ⟶ {x:A| R[x;left]}  ⟶ {x:A| R[x;right]}  ⟶ {x:A| R[x;left "*" right]} \000C].
[Divide:num:rat_term() ⟶ denom:rat_term() ⟶ {x:A| R[x;num]}  ⟶ {x:A| R[x;denom]}  ⟶ {x:A| R[x;num "/" denom]} ].
[Minus:num:rat_term() ⟶ {x:A| R[x;num]}  ⟶ {x:A| R[x;rtermMinus(num)]} ].
  (rat_term_ind(v;
                rtermConstant(const) Constant[const];
                rtermVar(var) Var[var];
                rtermAdd(left,right) rec1,rec2.Add[left;right;rec1;rec2];
                rtermSubtract(left,right) rec3,rec4.Subtract[left;right;rec3;rec4];
                rtermMultiply(left,right) rec5,rec6.Multiply[left;right;rec5;rec6];
                rtermDivide(num,denom) rec7,rec8.Divide[num;denom;rec7;rec8];
                rtermMinus(num) rec9.Minus[num;rec9])  ∈ {x:A| R[x;v]} )


Proof




Definitions occuring in Statement :  rat_term_ind: rat_term_ind rtermMinus: rtermMinus(num) rtermDivide: num "/" denom rtermMultiply: left "*" right rtermSubtract: left "-" right rtermAdd: left "+" right rtermVar: rtermVar(var) rtermConstant: "const" rat_term: rat_term() uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat_term_ind: rat_term_ind so_apply: x[s1;s2] so_apply: x[s1;s2;s3;s4] so_apply: x[s] rat_term-definition rat_term-induction uniform-comp-nat-induction rat_term-ext eq_atom: =a y btrue: tt it: bfalse: ff bool_cases_sqequal eqff_to_assert any: any x top: Top all: x:A. B[x] implies:  Q has-value: (a)↓ so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  rat_term-definition istype-void has-value_wf_base is-exception_wf lifting-strict-atom_eq strict4-decide istype-int rtermConstant_wf rtermVar_wf rtermAdd_wf rtermSubtract_wf rtermMultiply_wf rtermDivide_wf rtermMinus_wf rat_term_wf all_wf set_wf subtype_rel_self istype-universe rat_term-induction uniform-comp-nat-induction rat_term-ext bool_cases_sqequal eqff_to_assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule isect_memberEquality_alt voidElimination introduction extract_by_obid hypothesis inhabitedIsType lambdaFormation_alt thin sqequalSqle divergentSqle callbyvalueDecide sqequalHypSubstitution hypothesisEquality unionElimination sqleReflexivity equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed isectElimination independent_isectElimination lambdaEquality_alt isectIsType functionIsType universeIsType universeEquality setIsType because_Cache applyEquality functionEquality setEquality instantiate functionExtensionality intEquality setElimination rename dependent_set_memberEquality_alt

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  rat\_term()  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:rat\_term()].  \mforall{}[Constant:const:\mBbbZ{}  {}\mrightarrow{}  \{x:A|  R[x;"const"]\}  ].
\mforall{}[Var:var:\mBbbZ{}  {}\mrightarrow{}  \{x:A|  R[x;rtermVar(var)]\}  ].  \mforall{}[Add:left:rat\_term()
                                                                                                  {}\mrightarrow{}  right:rat\_term()
                                                                                                  {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                                  {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                                  {}\mrightarrow{}  \{x:A|  R[x;left  "+"  right]\}  ].
\mforall{}[Subtract:left:rat\_term()
                      {}\mrightarrow{}  right:rat\_term()
                      {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                      {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                      {}\mrightarrow{}  \{x:A|  R[x;left  "-"  right]\}  ].  \mforall{}[Multiply:left:rat\_term()
                                                                                                            {}\mrightarrow{}  right:rat\_term()
                                                                                                            {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                                            {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                                            {}\mrightarrow{}  \{x:A|  R[x;left  "*"  right]\}  ].
\mforall{}[Divide:num:rat\_term()
                  {}\mrightarrow{}  denom:rat\_term()
                  {}\mrightarrow{}  \{x:A|  R[x;num]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;denom]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;num  "/"  denom]\}  ].  \mforall{}[Minus:num:rat\_term()
                                                                                                {}\mrightarrow{}  \{x:A|  R[x;num]\} 
                                                                                                {}\mrightarrow{}  \{x:A|  R[x;rtermMinus(num)]\}  ].
    (rat\_term\_ind(v;
                                rtermConstant(const){}\mRightarrow{}  Constant[const];
                                rtermVar(var){}\mRightarrow{}  Var[var];
                                rtermAdd(left,right){}\mRightarrow{}  rec1,rec2.Add[left;right;rec1;rec2];
                                rtermSubtract(left,right){}\mRightarrow{}  rec3,rec4.Subtract[left;right;rec3;rec4];
                                rtermMultiply(left,right){}\mRightarrow{}  rec5,rec6.Multiply[left;right;rec5;rec6];
                                rtermDivide(num,denom){}\mRightarrow{}  rec7,rec8.Divide[num;denom;rec7;rec8];
                                rtermMinus(num){}\mRightarrow{}  rec9.Minus[num;rec9])    \mmember{}  \{x:A|  R[x;v]\}  )



Date html generated: 2019_10_29-AM-09_31_06
Last ObjectModification: 2019_03_31-PM-05_26_29

Theory : reals


Home Index