Nuprl Lemma : rat_term-induction
∀[P:rat_term() ⟶ ℙ]
  ((∀const:ℤ. P["const"])
  
⇒ (∀var:ℤ. P[rtermVar(var)])
  
⇒ (∀left,right:rat_term().  (P[left] 
⇒ P[right] 
⇒ P[left "+" right]))
  
⇒ (∀left,right:rat_term().  (P[left] 
⇒ P[right] 
⇒ P[left "-" right]))
  
⇒ (∀left,right:rat_term().  (P[left] 
⇒ P[right] 
⇒ P[left "*" right]))
  
⇒ (∀num,denom:rat_term().  (P[num] 
⇒ P[denom] 
⇒ P[num "/" denom]))
  
⇒ (∀num:rat_term(). (P[num] 
⇒ P[rtermMinus(num)]))
  
⇒ {∀v:rat_term(). P[v]})
Proof
Definitions occuring in Statement : 
rtermMinus: rtermMinus(num)
, 
rtermDivide: num "/" denom
, 
rtermMultiply: left "*" right
, 
rtermSubtract: left "-" right
, 
rtermAdd: left "+" right
, 
rtermVar: rtermVar(var)
, 
rtermConstant: "const"
, 
rat_term: rat_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
rtermConstant: "const"
, 
rat_term_size: rat_term_size(p)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
rtermVar: rtermVar(var)
, 
rtermAdd: left "+" right
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
rtermSubtract: left "-" right
, 
rtermMultiply: left "*" right
, 
rtermDivide: num "/" denom
, 
rtermMinus: rtermMinus(num)
Lemmas referenced : 
uniform-comp-nat-induction, 
rat_term_wf, 
le_wf, 
rat_term_size_wf, 
istype-nat, 
le_witness_for_triv, 
rat_term-ext, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
itermAdd_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-le, 
istype-less_than, 
int_seg_wf, 
rtermMinus_wf, 
rtermDivide_wf, 
rtermMultiply_wf, 
rtermSubtract_wf, 
rtermAdd_wf, 
rtermVar_wf, 
rtermConstant_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
hypothesis, 
isectEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
voidElimination, 
independent_pairFormation, 
applyLambdaEquality, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
universeIsType, 
dependent_set_memberEquality_alt, 
productIsType, 
imageElimination, 
isectIsType, 
functionIsType, 
universeEquality
Latex:
\mforall{}[P:rat\_term()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}const:\mBbbZ{}.  P["const"])
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  P[rtermVar(var)])
    {}\mRightarrow{}  (\mforall{}left,right:rat\_term().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  "+"  right]))
    {}\mRightarrow{}  (\mforall{}left,right:rat\_term().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  "-"  right]))
    {}\mRightarrow{}  (\mforall{}left,right:rat\_term().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  "*"  right]))
    {}\mRightarrow{}  (\mforall{}num,denom:rat\_term().    (P[num]  {}\mRightarrow{}  P[denom]  {}\mRightarrow{}  P[num  "/"  denom]))
    {}\mRightarrow{}  (\mforall{}num:rat\_term().  (P[num]  {}\mRightarrow{}  P[rtermMinus(num)]))
    {}\mRightarrow{}  \{\mforall{}v:rat\_term().  P[v]\})
Date html generated:
2019_10_29-AM-09_30_46
Last ObjectModification:
2019_03_31-PM-05_21_32
Theory : reals
Home
Index